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Problems for Week Three 
 

Problem One: Concept Checks 

As a warm-up, take a few minutes to answer these questions before moving on. 

i. There are five propositional connectives besides ⊤  and ⊥ . What are they? 

ii. What is the negation of the formula p → q? Repeat this exercise for the four remaining propositional 
connectives. 

iii. In a propositional logic formula, what does each variable represent? In a first-order logic formula, what 
does each variable represent? 

iv. What is the difference between a predicate and a function? 

v. Can predicates and functions be applied to objects? 

vi. Can predicates and functions be applied to propositions? 

vii. There's a propositional connective that often pairs with the ∀ quantifier. Which is it? 

viii. There's a propositional connective that often pairs with the ∃ quantifier. Which is it? 

ix. In first-order logic, is the equality symbol (=) a predicate, a function, both, or neither? 

 

Problem Two: Implications are Weird 

The “implies” connective → is one of the stranger connectives. Below are a series of statements regarding im-
plications. For each statement, confirm that it is indeed true, then briefly explain why. 

i. For any propositions P and Q, the following is always true: (P → Q) ∨  (Q → P). 

ii. More generally, for any propositions P, Q, and R, the following statement is always true: 

(P → Q) ∨  (Q → R). 
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Problem Three: Designing Propositional Formulas 

Below is a series of English descriptions of relations among propositional variables. For each description, write 

a propositional formula that precisely encodes that relation. Then, briefly explain the intuition behind your for-
mula. Try to see if you can come up with the simplest formula possible. If you find yourself writing out some-

thing extremely long, chances are you're missing something easier. All of these problems have formulas that can 
be cleanly written on a single line. 

i. For the variables a, b, and c: exactly one of a, b, and c is true. 

ii. For the variables a, b, c, and d: If any of the variables are true, then all the variables that follow it al-
phabetically in the English alphabet are also true. 

 

Problem Four: True or False? 

Below is a list of statements written in first-order logic. For each statement, translate it into English, then decide 

whether it's true or false. 

i. ∀n ∈ ℕ. ∃m ∈ ℕ. n < m 

ii. ∃n ∈ ℕ. ∀m ∈ ℕ. n < m 

iii. ∀n ∈ ℕ. ∀m ∈ ℕ. (n < m → ∃p ∈ ℕ. (n < p ∧  p < m)) 

iv. ∀n ∈ ℝ. ∀m ∈ ℝ. (n < m → ∃p ∈ ℝ. (n < p ∧  p < m)) 

v. ∀n ∈ ℕ. ∀m ∈ ℕ. ∃p ∈ ℕ. (n = p · m) 

vi. ∀n ∈ ℝ. ∀m ∈ ℝ. ∃p ∈ ℝ. (n = p · m) 

 

Problem Five: Interpersonal Dynamics 

The diagram to the right represents a set of people named A, B, C, and D. If there's an 

arrow from a person x to a person y, then person x loves person y. We'll denote this by 
writing Loves(x, y). Below is a list of formulas in first-order logic about the above picture. 
In those formulas, the letter P represents the set of all the people. For each formula, de-

termine whether that formula is true or false. 

i. ∀x ∈ P. ∀y ∈ P. (Loves(x, y) ∨  Loves(y, x)) 

ii. ∀x ∈ P. ∀y ∈ P. (x ≠ y → Loves(x, y) ∨  Loves(y, x)) 

iii. ∀x ∈ P. ∀y ∈ P. (x ≠ y → (Loves(x, y) ↔ ¬Loves(y, x))) 

iv. ∃x ∈ P. ∀y ∈ P. (Loves(x, y)) 

v. ∃x ∈ P. ∀y ∈ P. (x ≠ y → Loves(x, y)) 

vi. ∀y ∈ P. ∃x ∈ P. (Loves(x, y)) 

vii. ∀y ∈ P. ∃x ∈ P. (x ≠ y ∧  Loves(x, y)) 

viii. ∃x ∈ P. ∀y ∈ P. (¬Loves(x, y)) 
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Problem Six: Negating Statements 

For each of the first-order logic formulas below, find a first-order logic formula that is the negation of the origi-

nal statement. Your final formula must not have any negations in it except for direct negations of predicates. For 

example, the negation of the formula ∀x. (P(x) → ∃y. (Q(x) ∧  R(y))) could be found by pushing the negation in 

from the outside inward as follows: 

    ¬(∀x. (P(x) → ∃y. (Q(x) ∧  R(y)))) 

    ∃x. ¬(P(x) → ∃y. (Q(x) ∧  R(y))) 

    ∃x. (P(x) ∧  ¬∃y. (Q(x) ∧  R(y))) 

    ∃x. (P(x) ∧  ∀y. ¬(Q(x) ∧  R(y))) 

    ∃x. (P(x) ∧  ∀y. (Q(x) → ¬R(y))) 

Show every step of the process of pushing the negation into the formula (along the lines of what is done above). 
You don't need to formally prove that your negations are correct. 

You may want to read over the Guide to Negating Formulas before attempting this problem. 

i. ∃k. (RugbyPlayer(k) ∧  FootballPlayer(k) ∧  49er(k)) 

ii. ∀t. (Edible(t) ∧  Nutritious(t) → Cultivated(t)) 

iii. ∀p. (Person(p) → (∃q. (Person(q) ∧  TallerThan(p, q))) ∨  (∃q. (Person(q) ∧  TallerThan(q, p)))) 

iv. ∃r. (Silly(r) ↔ ¬Serious(r)) 

 

Problem Seven: The Epimenides Paradox 

Recall from Problem Set One that a paradox is a statement that leads to a contradiction regardless of whether it's 
true or false. One of the earliest paradoxes is the called the Epimenides Paradox, which is stated as follows: 

Epimenides, a Cretan, says “All Cretans always lie.” 

According to the ancient Greeks, this statement is a paradox because Epimenides can neither tell the truth nor 
lie. A sketch of the argument is as follows: 

“If Epimenides tells the truth, then all Cretans always lie. Since Epimenides is himself a Cre-

tan, then he must be lying, which is impossible because we know that Epimenides is telling the 
truth. This is a contradiction. 

If, on the other hand, Epimenides is lying, then his statement is false and all Cretans never lie. 
Since Epimenides himself is a Cretan, then he must be telling the truth, which is impossible 
because we know that he was lying. This too is a contradiction. 

Thus we have a contradiction regardless of whether Epimenides is lying or truthful – a para-
dox!” 

However, there is a flaw in the above line of reasoning, and despite its name the Epimenides Paradox is not a 

paradox. 

Identify the flaw in this reasoning. Since this is not really a paradox, Epimenides must either be lying or telling 

the truth. Is Epimenides lying or telling the truth? If he's telling the truth, why doesn't his statement contradict 
itself? If he's lying, why doesn't his statement contradict itself? 
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Problem Eight: Translating into Logic 

Here are some statements we'd like you to translate into logic. As with the problem set, you should only use the 

provided predicates, functions, and constants in your translation. 

We recommend reading over the Guide to First-Order Logic Translations before attempting this problem. 

i. Given the predicates Orange(x), which states that x is orange, and Cat(x), which states that x is a cat, 
write a formula in first-order logic that says “every cat is orange.” 

ii. Given the predicates Orange(x), which states that x is orange, and Cat(x), which states that x is a cat, 

write a formula in first-order logic that says “some cat is orange.” 

iii. Given the predicates Orange(x), which states that x is orange, and Cat(x), which states that x is a cat, 
write a formula in first-order logic that says “there are no orange cats.” 

iv. Given the predicates Orange(x), which states that x is orange, and Cat(x), which states that x is a cat, 
write a formula in first-order logic that says “some cat is not orange.” 

v. Given the predicates Person(x), which states that x is a person; Orange(x), which states that x is orange; 
Cat(x), which states that x is a cat; and Likes(x, y), which states that x likes y, write a formula in first-order logic 
that says “everyone likes at least one orange cat.” 

vi. Given the predicates Person(x), which states that x is a person; Cat(x), which states that x is a cat; and 
Likes(x, y), which states that x likes y, write a formula in first-order logic that says “everyone likes exactly one 
cat.” 

vii. Given the predicate Person(x), which states that x is a person, and Muggle(x), which states that x is a 
muggle, write a statement in first-order logic that says “some (but not all) people are muggles.” 

viii. Given the predicate Person(x), which states that x is a person, and Ruler(x), which states that x is a rul-
er, write a statement in first-order logic that says “at most one person is a ruler.” 

ix. Given the predicate Instant(i), which states that i is an instant in time, and Precedes(x, y), which states 

that x precedes y, write a sentence in first-order logic that says “time has a beginning, but has no end.” 


